
Journal of Statistical Physics, VoL 38, Nos. 5/6, 1985 
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We give the exact asymptotic form, at low activity, of the correlations of a 
classical fluid consisting of several species of particles interacting by means of 
integrable two-body potentials. Our results also extend to classical dipoles with 
r -3 potential in two dimensions. 
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1. INTRODUCTION 

The exact asymptotic form of the correlation functions has been recently 
obtained for a classical fluid of identical particles interacting by means of a 
two-body potential with integrable power law decay.(1) In particular it was 
proved that all truncated correlation functions decay like the potential 
either for small activities, or for any values (z, fl) of activity and tem- 
perature such that the state is unique and has some power law decay. For 
references related to this old problem, we refer to Ref. 1. 

In this paper we extend this analysis to the case of a fluid consisting of 
several species of particles interacting by means of integrable two-body 
potentials ~b~2(x x-x2) ,  where ~e {1 ..... N} denotes the species. Assuming 
that at least one of the potentials has a power law decay--the others could 
be finite range or have some power law decay--we obtain the exact 
asymptotic form of all correlation functions. In particular assuming that 
the slowest decaying potential behaves like d[x]-~ as x ~  ~ ( 7 > v )  we 
prove that 

lim 2~p~,2(2.~)=-fl ~, K=,~,d~t~(k ) K~=~ 
~1,~2 
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where 2 is a unit vector, 

d~i~2(.~ ) = lim .U~b~2(22 ) 

and K~a is related to the compressibility tensor: 

d ; 
K ~ a - z ~ p a = p ~ 3 ~ +  dypT(y) 

dz~ 

Note that d ~  could be zero for some pair (~1e2). This result implies that 
the effective potential between any two particles will always behave like the 
slowest decaying potential, with factors associated to the partial com- 
pressibilities. 

We shall also consider the case of a fluid consisting of "rotators" 
interacting by means of "dipole-type" interactions, i.e., 
~lCo2(X)  ~ d,,,~o~2(2)Ix[-r as Ix[ ~ o% where co denotes the orientation of the 
rotator and d,olo~(2)= (o)1, A(2)co2) with A(2) a matrix covariant under 
SO(d) transformations. For example, for dipolar systems and v = d =  3, 
A~j(2) = m2(3x~x~ - ~). In the case of rotators we prove that 

l ira 2 ~ T o^ I e -  112d~~176 ~ P~~ P 3y J 

where p is the density of particles, y is the usual factor in the theory of 
dielectrics [y  = (47z/9)#m2p in three dimensions] and 

e--1 

This result is applicable to a system of dipoles with r-3 potential in 
two dimensions. 

Let us recall that on the other hand the expected result for 
three-dimensional dipoles is 

[- s - l ~ 2  1 
lim 23 p~1~o2(22) = - f l  [p  - ~ y ]  7 dc~176 

where in the definition of the dielectric constant only the "short-range part 
includea. of pr,, is " J (2) 

2. DEFIN IT IONS A N D  RESULTS 

The system consists of particles in R v having internal degrees of 
freedom. These internal degrees of freedom are labeled by the points of 
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some measurable space f2 with finite measure. To simplify the discussion 
we restrict ourselves to the case where (2 is discrete, i.e., (2 = { 1,..., N} and 
c~ e (2 labels the different species, and to the case where f2 is the unit sphere 
in Nd with the usual invariant normalized measure, i.e., f 2 = S  (a) and 
co e S (a) represents the axis of the rotator. Whenever there is no confusion 
we also use the notation co to label the particles. The extension to general 
f2 (2) and to general domains ~ c N~ (~) is straightforward. 

We denote a one-particle configuration by q =  (x, co), x e N~, co s f2 
and write ~ dq = ~ dx ~s,~ de), respectively, ~ dq = ~ dx E ~ e .  For n-par- 
ticle configuration we write 

..... qn) and ~dQ=[dq~,...,~dq~ Q=Q(' )=(ql  
d ,] J 

The particle interacts by means of a two-body potential q~(q~, q2) such 
that 

~b(q~, q2) = ~b(q2, ql) = ~b~o~2(x~ - x2) 

and having the following properties: 

~b(qi, qj) ~> - n B  for some B >~ O and all (ql,..., q,) (la) 
l < ~ i < j < ~ n  

lim 27~bo)z~o2(22 ) = do~1o)2(2) uniformly with respect to 2 (lb) 

where the functions d~,~/~2(2 ) are continuous on the unit sphere J2] = 1 and 
are not all identically zero. 

Notice that (la) and (lb) imply that 7 is the power of the slowest 
decaying potential and that 

le-~(q~q2) _ 1[ < c(fl)[lxl - x21' + 1 ] - - 1  (2) 

f dq, fe -~*(q'q2)- 11 <~ b(fi) < oo (3) 

The equilibrium states are parametrized by the temperature fl = 1/KT 
and by the activity z(q)= z~ in the discrete case, z(q)= z for the rotator. 

The small activity expansion of the truncated correlation functions is 
given by the series 

~o 1 
p r ( Q ) =  ~ -~..In(Q) (4) 

n 0 

In(Q) = ~ [ dQ(~)Fg(QO(")) z(QQ) (5) 
g ~ G ~  ' 
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where G~ is the set of fully connected graphs with IQI + n vertices QQ("), Q 
fixed, and O~") arbitrary; Fg(QQ ~'~ =l-l~g (e -a*(J)- 1), I being a line of 
the graph g; and z(O.) = I-Iqe~2 z (q ) .  

We recall that the series converges absolutely for z(q) < Zo. We denote 
by Qa the translate of Q by d~, where ~ is some fixed unit vector in W: 

QX = ((xl + 2a, col) ..... (x. + ;ta,o%)) 

Our main results are given by the following propositions: 

P ropos i t ion  1. If the potentials satisfy the conditions (la, lb) with 
,/> v then for any Q 14: 4, Q2 4: ~b, and 0 ~< z(q) <~ Zo 

l i m  ~ypT(QI ,  Q~)~- --ff ~ dr 1 df~2g~sl(Q1) dgol~2(flt) g~2(Q2)  ~ ~ oo Jo Jo 

K6,(Q) = N~(O) pr(Q) + f dg pr(Q, (2c, 69)) where 

N~(Q)= ~ fi,~o,, (6) 
qi E Q. 

Furthermore, in the case of N-component systems 

e f K~(Q) = z= - -  pr(Q) and de5 = 2 
dz~ 

Propos i t ion  2. For rotator systems interacting by means of 
two-body potential satisfying (la, Ib), and such that 

Remark. The 
similar ,to Eq. (6) with Ko)(Q) replaced by 

do,~o~(2) = (r A(2) o~2) 
~y T ). lim P (ql, q2) = - f i  K2 d~1~o2(~) 

A~oo 

asymptotic behavior of [p(QIQ~)-p(Q1)p(Q~)] is 

K'~(Q) = N~(Q) p(Q) + f dg[p(Q, (~2, (5)) - p(Q) p(y, r 

3. P R O O F S  OF P R O P O S I T I O N S  1 A N D  2 

To establish the above propositions we follow the proof of Ref. 1: we 
first compute explicitly the limit )~ ~ oe of ;tU~(Q1, Q~) (Lemma 1) and 
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then we give bounds which justify the permutation of the limit 2 --+ ~ with 
the summation over n (Lemma 2). 

L e m m a  1 : 

lim 
2~oo 

2~/.(QI, Q~) 

k=O 
k+l=n 

nT 
"'" I('~)tt-Jl~ do~,2(~) I~'~2)(Q2) 

k! l! k ~ 

where 

I~)(Q) --- ~ f dO~")Fg(Q' O) N~(QQ) z(QO) 
g e G~ ) ' 

= N~,(Q) In(Q) + n f d.~ In _ ~(Q, (.~, oh)) (7) 

L e m m a  2. There exists c, > 0  independent of 2 such that 

(n!) -a IXeI.(Q1, Q~)I ~< c. and ~ c~ < oo 
n~>O 

It then follows from Lemmas 1 and 2, together with Eqs. (5)-(7) that 

limc~ ~YPT(Q1,  Q2A) : --~ f d(~l f duJ)2 go~l(al ) dcDl~2 (/~) Kco2(O2) 

with 

K~(Q) = 
n~0 

(, 
(n!)- ~I~)(Q) = N~opT(Q) + J dX pT(Q, (~, ~)) 

d 
= z ~ - - p r ( Q )  

dz~ 

Proof of Lemma 1. Following the proof of Ref. 1 we divide the 
domain of integration into 

where ~ ) i s  around the origin, ~ ) =  {x[ IxJ < 2/4}, and ~(2 ~) around 2~, 
~ ) =  {fx] ] f x - 2 ~ [  <2/4}.  

It is rather intuitive that the only contribution to the 
lima ~ ~ 2~I,(Q1Q~) will come from graphs with vertices in @~ or ~ and 
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with only one line 1 connecting ~ to ~2. For a proof of this fact we refer to 
Ref. 1. In mathematical terms this means 

lim 2 ~ I . = - f l  E E E Y', 
~ .~  co 1 c  {1,.,.n} gl~GQI,]I] g2eGo2,1ji le~al ,  j 

f dO., f dos Fg~(Qt Q,) Fg2(Q20.J) z(Q~ O,) z(Q2~)J) d,(~) 

The set of vertices {1,..., n} is decomposed into two parts: {1 ..... n} = Ivo J. 
The vertices in I are in ~ ,  the vertices in J are in ~ .  s  denotes the set 
of lines connecting Q, Q, tot Q~Q_j. But 

Thus 

d,(~t) = f d&l f dch2N6,a(Q1QI) Na,2(Q2Qj) d~,2(~) 
l E ~'l,J 

n~ 
lim'~I'~= -fl  f dall f d~ ~ k!l! 

k = O  
k + l ~ n  

gl e GQI,k 

which concludes the proof of Lemma 1. 
Using the estimates Eqs. (2) and (3), the proof of Lemma 2 is identical 

to the proof given in Ref. 1. | 

Proof of Proposition 2. Proposition 1 implies 

lim .Upr(ql, q2~)= - f l  f d&~ f d032 
2 ~ o o  0 ~  0t? 

From the convergence of the Mayer expansion it is easy to prove the 
following Euclidean invariance of the two-point function 

P(ql, q2) = Po~o2(x~ - x2) = O~l,eo~a(~(xl - x2)) 
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where N e SO(d). In particular if ~(0~(~1)  denotes a rotation of axis C.) 1 and 
angle c~, we have 

p((x~, o,), (x2, co2))= p~,.~(~,)~:(~(c.5,)(x,-x:)) (s) 

Now d~,o2(fi)= c51A(fi)052, where A(fi) is a tensor field on the unit sphere. 
Let us compute 

We use the decomposition 

f dqlP(qlql) o)1A052 

(/)1 ~-- ((2) 1 ' (D1) (D1 -{- (~# 

The symmetry property (8) together with the rotation invariance of dq 
implies 

f dqi P(ql ql) 051s 

= f dgll p(q~Vg~)(~'(ach~) co() A05 2 (9) 

Choosing ~ such that N(~651)05~ = -05(  

- f dgl~ p(q~ ql ) 05(A052 (9) 

Therefore 

Similarly, 

(10) and (11) yields the result. 

f dg71 p(qlq~) ~IA~2  

= f d~h(COl "051) P(qlgh) COlA052 

f dq2 P(qzq2) ~o,A~2 

= f dq2(/)2 "(~2p(q2g12) c01Aco 2 

! 

(lo) 

(ll) 
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4. C O N C L U D I N G  R E M A R K S  A N D  C O N J E C T U R E  

In the domain of convergence of the activity expansion the state is 
invariant under translation: 

p(q) = p~, p(q, q') = p ~ , ( x  - x ' )  

K~(q') = K~,  =- z~ - -  p~, = p~3~,  + dy PL ' (Y)  
dz~ 

Since p~ = @/01~,  with p the pressure, we obtain the interpretation of the 
coefficients K~,,  in terms of the compressibility tensor z ~ , ; i n d e e d  

implies 

K ~ , = P 2 f l  ~Z~, and @ = / ~  l ~ K ~ , p ~ ,  

We have thus obtained as special case of Proposition 1 (with 
[QI[ = [Q21 = 1) 

P~ '~(  )l~l ~ ~ 
Cel,~2 

From the stability condition it is expected, and sometime can be proved, 
that the compressibility tensor is definite positive. Thus Proposition 1 
implies that 2 ~ r o A p~l~2(zx) tends to a nonzero limit as 2--* ~ for all (el,  r , 

i.e., all correlation functions decay exactly like the slowest decaying poten- 
tial whenever 7 > v. 

On the other hand for very-long-range potential 7 ~< v -  1 (7 = v - 2 ,  
corresponding to Coulomb potential) it is possible to show that any 
~l-cluster ing equilibrium state must obey the following sum rule (4, 5): 

d~a(~) Ka(Q) = 0 
o~ 

In particular for ]Q[ = 1 it yields 

P~l (  ) = 0 

These sum rules show that the result expressed by Proposition 1 remain 
valid for ?, ~ v - 1; the sum rules which express the screening condition for 
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very-long-range potential are exactly the necessary conditions for the 
correlation to decay faster than the potential. 

It is then tempting to conjecture that Proposition 1 will hold for any 
potentials with power law decay, except that the coefficient K~a might be 
slightly different for v -  1 < ~ ~< v, as it is expected for dipoles systems 
(~ = v ) .  
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